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ABSTRACT

Learning neural radiance fields (NeRF) without camera poses
has been widely studied. However, recent methods lack ex-
plicit and effective supervision for pose estimation, resulting
in ambiguous optimization of camera pose and NeRF geom-
etry during joint training, particularly in scenarios involving
large camera movements. In this paper, we propose FDC-
NeRF that leverages the direction information contained in
the RGB-based optical flow and depth-based virtual flow as a
direct guidance for camera pose optimization to reduce pose-
geometry ambiguity. Additionally, we introduce Adaptive
Pose-Aware Sampling (APAS) to replace the previous random
ray sampling strategy, which reduces the difficulty of pose
learning in early stages and preserves the diversity of rays in
later stages. Experiments on the challenging Tanks and Tem-
ples dataset demonstrate that our method achieves state-of-
the-art results in both novel view synthesis quality and pose
estimation accuracy.

Index Terms— Neural Radiance Fields, Pose Estimation,
Novel View Synthesis, 3D Reconstruction

1. INTRODUCTION

Neural Radiance Fields (NeRF) [1] has demonstrated pow-
erful capability in 3D scene representation and high-fidelity
Novel View Synthesis (NVS), which is widely applied in
VR/AR, 3D content generation, etc. A crucial prerequisite
for NeRF reconstruction is the reliable annotated camera pa-
rameters. However, accurate poses are not always feasible
in real-world scenarios, and the pre-processing of camera
parameters heavily relies on offline methods like Structure-
from-Motion (SfM) [2].
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Fig. 1: Illustration of pose-geometry ambiguity and flow-guided
pose optimization.

To reduce the reliance on camera parameters, efforts have
been made to estimate camera poses and radiance fields
simultaneously. In particular, iNeRF [3] utilizes recon-
structed NeRF to estimate camera poses for novel viewpoints.
NeRFmm [4] proposes an end-to-end pipeline to jointly es-
timate camera extrinsics, intrinsic, and NeRF. BARF [5]
analyzes the connection between planer image alignment and
NeRF, and proposes a coarse-to-fine positional encoding. SC-
NeRF [6] further estimates camera distortion with geometric
regularization. GARF [7] and SiNeRF [8] facilitate easier
joint learning by adopting different activation functions in
NeRF MLPs. These methods are limited to pose initialization
close to the ground truth. GNeRF [9] adopts GAN to reduce
this limitation but still requires a known pose sampling dis-
tribution. Recently, NoPe-NeRF [10] integrates mono-depth
maps into joint estimation to tackle the challenging large
camera movements without pose priors, which is more rele-
vant to our work. However, these methods still fail to recover
adequate scene geometry for accurate pose estimation.

The key challenge lies in the pose-free NeRF is the pose-
geometry ambiguity. NeRF tends to overfit 3D scenes for
photorealistic RGB restoration but lacks explicit geometry
learning [11], while accurate camera pose estimation relies
on abundant geometry guidance. During joint optimization,
NeRF’s geometric ambiguity leads to uncertain gradients for
pose optimization and inaccurate pose estimation results in
poor NeRF reconstruction. This ambiguity grows when han-
dling large camera movements. To mitigate the dependency
of pose learning on NeRF geometry, as shown in Fig.1, we
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Fig. 2: Network architecture. In our pipeline, NeRF MLP and the parameters in orange are jointly optimized, where the novel APAS is
proposed for ray sampling. We introduce mono-depth loss and propose flow-depth consistency for joint optimization.

propose the Flow-Depth Consistency Guidance which lever-
ages the direction information embedded in the 2D optical
flow to provide direct guidance for pose optimization. Specif-
ically, we enforce RGB-based optical flow to be consistent
with depth-based virtual flow to excavate geometry clues
across views. Additionally, the random sampling strategy
applied in previous methods may introduce less anisotropic
supervision in low-textured regions, which further increases
the pose-geometry ambiguity. We draw inspiration from cur-
riculum learning [12] and introduce the Adaptive Pose-Aware
Sampling (APAS) strategy. The APAS starts by extracting
pose-aware feature points for effective supervision in pose
estimation, then adaptively adjusts the sampling regions to
broaden the diversity of rays for better scene representation.

In summary, the primary contributions are as follows:
• We propose the Flow-Depth Consistency Guidance,

which leverages the direction information in 2D optical
flow and virtual flow to provide direct guidance for
joint pose-NeRF optimization.

• We introduce the APAS strategy to sample pose-aware
feature points for more effective pose supervision, and
adaptively adjust the sampling regions to increase the
diversity of rays.

• Experimental results on Tanks and Temples dataset [13]
with large camera movements show that our method
achieves state-of-the-art performance on both novel
view synthesis quality and pose estimation accuracy.

2. METHODOLOGY

We provide an overview pipeline in Fig. 2. Given a sequence
of images {Ii}Ni=1 with large camera movements and cam-
era intrinsics {Ki}Ni=1, our goal is to reconstruct the radiance
field of the 3D scene without camera extrinsics {Ti}Ni=1[4].
We take NeRFmm [4] integrated with monocular depth super-
vision as our baseline, and propose the flow-depth consistency
guidance (Sec.2.2) with the APAS strategy (Sec.2.3) to tackle
the challenge of handling large camera movements without
good pose initialization.

2.1. Formulation and Preliminaries
NeRF represents scene as a view-dependent mapping function
FΘ : (x, d) → (c, σ) parameterized by an MLP Θ, where
x ∈ R3 is the 3D point location, d ∈ R3 is the corresponding
viewing direction, c ∈ R3 and σ ∈ R are the radiance color
and density values respectively. A synthesized image Î can
be rendered by compositing radiance color and density along
camera rays r(t) = o+ td between near and far plane tn and
tf . The volume rendering [14, 15] is formulated as:

Îi(r) =

∫ tf

tn

W (t)σ(r(t))c(r(t),d) dt, (1)

where W (t) = exp(−
∫ t

tn
σ(r(s)) ds) is accumulated trans-

mittance along the ray, and W (t) is utilized to render depth
as D̂i =

∫ tf
tn

W (t)σ(r(t)) dt. The NeRF parameters Θ and
the camera pose Ti that are used to cast the ray can be jointly
estimated by minimizing the photometric loss:

LRender = ΣN
i=1||Ii − Îi||22. (2)

Besides, we follow [10, 16] to regularize NeRF rendered
depth with adapted monocular depth estimation [17, 18] to
enhance the representation of scene geometry, making it less
prone to get stuck in local minima. Specifically, we generate
monocular depth sequence {Di}Ni=1 by DPT [17] , and build
learnable scale and shift parameters Φ = {αi, βi}Ni=1 to lin-
early adapt the mono-depth maps. The regularization between
rendered depth and mono-depth can be formulated as:

LDepth = ΣN
i=1||(αiDi + βi)− D̂i||, (3)

where Φ is jointly estimated for multi-view consistency.

2.2. Flow-Depth Consistency Guidance
As discussed in Sec.1, we address the pose-geometry am-
biguous problem by exploiting the consistency between op-
tical flow and 3D virtual flow to leverage direction informa-
tion for pose-free NeRF optimization. First, we propose a
local window strategy to impose flow-depth consistency be-
tween different viewpoints, providing more effective guid-
ance for the optimization of camera parameters. Denote an
image Ii, i ∈ [2, N − 1], a local window consists of Ii and its
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Fig. 3: Illustrations of our proposed methods. (a) Flow-depth
consistency is conducted in the Local Window. (b) Single-step of
adaptive region adjustment, where d is calculated based on the pho-
tometric loss along each ray.

adjacent frames {Ii−1, Ii+1}. As shown in Fig.3(a), our regu-
larization is similarly performed between consecutive frames
Ii ↔ {Ii−1, Ii+1} and cross-view frames Ii−1 ↔ Ii+1 to re-
duce errors caused by the misaligned unidirectional flow. The
following discussion focuses on Ii and Ii+1 for simplicity.

We utilize GMFlow [19] to estimate bidirectional optical
flow Fi↔i+1 between frames in RGB level. The occluded
parts are masked out by running forward-backward consis-
tency check [20] as Mi→i+1 = {|Fi→i+1 + Fi+1→i| > 0.5}
to prevent the learning of incorrect deformation in the oc-
cluded pixels. The 3D virtual flow is the coordinate offsets of
corresponding points between different views, which is gen-
erated by projecting one viewpoint to another using depth and
camera parameters. The virtual flow is generated as follows
and enforced to be consistent with RGB-based optical flow.
Denote a pixel pk on Ii, the corresponding pixel on Ii+1 can
be obtained via differentiable homography warping Π [21]
w.r.t. rendered depth D̂i and estimated pose Ti and Ti+1:

Πi→i+1 = Ki+1Ti+1T
−1
i K−1

i D̂i, (4)

where Ti+1T
−1
i represents relative camera poses, bringing a

pixel in the ith camera’s space to the i+1th’s. Denote (uk, vk)
the 2D coordinate values of pixel pk, the forward virtual flow
F̂i→i+1 from Ii to Ii+1 can be formulated as:

F̂i→i+1 = Πi→i+1((uk, vk))− (uk, vk), (pk ∈ Ii). (5)

Finally, we construct forward consistency between RGB-
based optical flow and virtual flow on the non-occluded valid
region from Ii to Ii+1, which can be calculated as:

Li→i+1
Flow =

||(̂Fi→i+1 − Fi→i+1) ⊙Mi→i+1||2
||Mi→i+1||1

, (6)

where ⊙ denotes the point-wise product, we apply a simi-
lar process to regularize the backward flow Li+1→i

F low , then the
flow-depth consistency Li↔i+1

Flow between two frames is the av-
erage of the forward’s and backward’s. The final calculation
of flow-depth consistency in a local window is:

LFlow = w1Li↔i+1
Flow + w2Li↔i−1

Flow + w3Li−1↔i+1
Flow , (7)

where we set w1 = 0.4, w2 = 0.4 and w3 = 0.2. The camera
poses and rendered depth are directly used for homography
warping in Equ.5, the 2D direction between frames embed-
ded in optical flow and virtual flow gives a much clearer 3D
gradient direction for joint optimization.

2.3. Adaptive Pose-Aware Sampling Strategy

Recent NeRFs apply the random ray sampling strategy while
increasing the probability of sampling in low-texture regions.
The rays sampled in these regions exhibit indistinguish-
able photometric error, which potentially aggravates pose-
geometry ambiguity. To tackle this issue, inspired by [3], we
propose a novel sampling strategy that adaptively adjusts the
sample areas from pose-aware positions to the entire image.
The SuperPoint [22] is first adopted to obtain a set of feature
points {p1, p2, ...pM} with pose-aware features for the initial
samplings. These points provide more effective supervision
for pose estimation when the scene geometry and camera
poses are ambiguous.

Denote pi in the feature point set, and the current sam-
pling region around pi is Ni, we then refer the idea of cur-
riculum learning [12] to adapt the region to N̂i for the subse-
quent random ray selection. Specifically, we expand Ni based
on the contribution of the photometric loss Li

Render on pi to
the overall loss LRender generated by all rays, as a low pho-
tometric error indicates sufficient learning of 3D scene along
this ray, the sampling region will be expanded to a larger ex-
tent. We expand Ni and conduct random sampling in N̂i to
increase the complexity of the follow-up training, enabling
NeRF to capture additional scene details. Assuming that Ni

is di × di, as shown in Fig.3(b), the adjustment of region Ni

is as follow:

N̂i = Ni

⋃
[di + dmax × σ(log

Li
Render

LRender
)]2. (8)

Here, σ represents the sigmoid function and dmax = 5
indicates the maximum range for adjustment. The region ad-
justment is conducted every 200 iterations until different re-
gions are merged to encompass the entire image. Finally, the
APAS returns to random sampling to increase ray diversity.

2.4. Loss Function

We assemble all constraints mentioned in previous sections,
and formulate the total loss as:

Loss = LRender + λ1LDepth + λ2LFlow, (9)

where we set λ1 = 0.04, λ2 = 0.01 in our experiments. We
jointly optimize camera poses T , NeRF parameters Θ, scale
and shift parameters Φ by minimizing the above loss as:

T ∗,Θ∗,Φ∗ = argmin
T,Θ,Φ

Loss(T̂ , Î, D̂, Φ̂, F̂|I,D,F), (10)

where T ∗,Θ∗,Φ∗ are optimized parameters, respectively.
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Fig. 4: Qualitative results of novel view synthesis on Tanks and
Temples dataset [13].

3. EXPERIMENTS

3.1. Dataset
Our experiment is conducted on the Tanks and Temples [13]
dataset, which contains challenging realistic indoor and out-
door environments with large camera movements. Following
[10], we select 8 scenes to evaluate pose accuracy and novel
view synthesis quality, with all images set to 960× 540. The
ground truth of camera parameters is estimated by COLMAP
[2]. For a fair comparison, we select every 8-th image in the
sequences for evaluation as defined in [1].

3.2. Implementation Details
Our model is built on NeRFmm [4]. We integrate the depth
loss and the learnable mono-depth distortion parameter from
[10] into NeRFmm. For extrinsics estimation, we initialize
the translation of each image as a zero vector and the rotation
matrix as an identity matrix. Camera rotations are optimized
in axis-angle ϕi ∈ so(3). In each iteration, our proposed
APAS strategy selects 1024 rays from an input image, and
uniformly samples 128 points along each ray within the range
of (0.1, 10). The model is trained for 10k epochs per scene
on an NVIDIA Tesla V100 GPU with two Adam optimizers
for NeRF and other parameters. The initial learning rates of
them are set to 0.001 and 0.0005, respectively.

3.3. Results on Tanks and Temples Dataset
We compare our method with state-of-the-art pose-free NeRF
baselines, including NeRFmm, BARF, and NoPe-NeRF. Be-
fore the evaluation of each method, we follow NeRFmm to
obtain the initial test poses by minimizing the photometric
loss while keeping NeRF frozen. Qualitative and quantitative
results of novel view synthesis are shown in Fig.4 and Tab.1,
where the image quality metrics PSNR, SSIM, and LPIPS
[23] are reported. The quantitative results of pose estimation
are presented in Tab.2, we report the relative translation error
(RPEt), relative rotation error (RPEr), and absolute trajectory
error (ATE). Our method outperformed other baselines by a
large margin in both NVS and pose estimation.

3.4. Ablation Study
Tab.3 shows the ablation experiments of our methods. We
observe that our proposed flow-depth consistency guidance

Table 1: Quantitative results of novel view synthesis on Tanks
and Temples [13] dataset. Bold numbers represent the best. Each
method is trained with public code and original parameters, and eval-
uated under the same settings.

Scenes Ours NoPe-NeRF [10] BARF [5] NeRFmm [4]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Church 25.53 0.74 0.37 25.17 0.73 0.39 23.17 0.62 0.52 21.64 0.58 0.54
Barn 26.86 0.71 0.40 26.33 0.69 0.44 25.28 0.64 0.48 23.21 0.61 0.53

Museum 26.90 0.77 0.33 26.41 0.77 0.36 23.58 0.61 0.55 22.37 0.61 0.53
Family 26.51 0.76 0.39 26.01 0.74 0.41 23.04 0.61 0.56 23.04 0.58 0.56
Horse 27.73 0.84 0.25 26.58 0.81 0.29 24.09 0.72 0.41 23.12 0.70 0.43

Ballroom 25.65 0.74 0.35 25.16 0.69 0.41 20.66 0.50 0.60 20.03 0.48 0.57
Francis 28.92 0.79 0.39 28.54 0.78 0.41 25.85 0.69 0.57 25.40 0.69 0.52
Ignatius 24.26 0.61 0.48 23.81 0.61 0.47 21.78 0.47 0.60 21.16 0.45 0.60

mean 26.55 0.75 0.37 26.01 0.73 0.40 23.43 0.60 0.54 22.49 0.58 0.53

Table 2: Quantitative results of pose estimation on Tanks and
Temples [13] dataset. Best results are Bolded. We take the
COLMAP estimation as the ground truth poses.

Scenes Ours NoPe-NeRF [10] BARF [5] NeRFmm [4]
RPEt ↓ RPEr ↓ ATE↓ RPEt ↓ RPEr ↓ ATE↓ RPEt ↓ RPEr ↓ ATE↓ RPEt ↓ RPEr ↓ ATE↓

Church 0.030 0.006 0.004 0.045 0.008 0.008 0.458 0.063 0.059 0.626 0.127 0.065
Barn 0.026 0.019 0.004 0.033 0.029 0.004 1.402 0.326 0.075 1.629 0.494 0.159

Museum 0.207 0.245 0.021 0.207 0.240 0.023 2.589 1.128 0.257 4.134 1.051 0.346
Family 0.031 0.009 0.002 0.047 0.011 0.002 0.577 0.595 0.116 2.743 0.537 0.120
Horse 0.188 0.018 0.004 0.179 0.039 0.003 0.239 0.399 0.016 1.349 0.434 0.018

Ballroom 0.034 0.019 0.001 0.058 0.025 0.003 0.343 0.228 0.019 0.449 0.177 0.031
Francis 0.063 0.031 0.005 0.079 0.042 0.011 0.924 0.749 0.095 1.647 0.618 0.207
Ignatius 0.029 0.007 0.002 0.037 0.006 0.004 1.187 0.288 0.057 1.302 0.379 0.041

mean 0.076 0.044 0.005 0.085 0.050 0.007 0.965 0.472 0.087 1.735 0.477 0.123

Table 3: Ablation results on Tanks and Temples [13].

Methods NVS Pose Est.
PSNR↑ SSIM↑ LPIPS↓ RPEt ↓ RPEr ↓ ATE↓

Ours 26.55 0.75 0.37 0.076 0.044 0.005
Ours w/o LFlow 25.84 0.72 0.40 0.101 0.057 0.011
Ours w/o APAS 26.20 0.73 0.37 0.086 0.051 0.007

Ours w/o LFlow and APAS 25.35 0.70 0.41 0.124 0.062 0.015

is the core contributor to the improvement of pose estima-
tions. When the flow-depth consistency is not considered, the
pose accuracy and NVS quality degrade significantly. This is
due to the absence of direct guidance from the pose optimiza-
tion gradient, making it more difficult for pose-free NeRF to
optimize effectively and leading to pose-geometry ambiguity.
When disabling the APAS strategy, as mentioned in Sec.2.3,
the rays sampled by random sampling may provide less effec-
tive supervision compared to APAS, resulting in lower per-
formance in pose accuracy and synthesis quality. With the
effect of a collaboration of all introduced modules, our pro-
posed method outperforms the baseline model and achieves
state-of-the-art results.

4. CONCLUSIONS

In this paper, we introduce FDC-NeRF that incorporates the
flow-depth consistency guidance and Adaptive Pose-Aware
Sampling (APAS) to jointly estimate camera poses and NeRF
in scenes with large camera movement and without pose prior.
The flow-depth consistency guidance leverages the consis-
tency between 2D optical flow and 3D virtual flow to provide
effective directions for pose optimization. We further pro-
pose the novel APAS to select pose-aware interest points and
adaptively adjust the region to the entire image for better joint
training. Qualitative and quantitative results on the Tanks and
Temples dataset demonstrate our state-of-the-art performance
on both novel view synthesis and pose estimation.
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