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ABSTRACT
Learning-based multi-view stereo (MVS) methods have been
widely studied recently. However, current works are lim-
ited to using fixed-size convolution kernels, leading to sub-
optimal features which lack anisotropy in low-textured re-
gions and tend to produce invalid depth blending at the edge
of the foreground and background. In this paper, we pro-
pose N2MVSNet, which learns adaptive non-local neighbors
matching (ANNM) and their spatial impact to overcome these
deficiencies. Furthermore, we explore the ability of spatial
perception to depth dimension and propose the 3D ANNM.
Besides, following the coarse-to-fine scheme, severe mis-
matchings in coarser stages will result in error accumulation
and propagation in finer stages. To this end, we adopt the pre-
trained RGB guided depth refinement for depth hypothesis
repolish. The robustness of the training process is further ele-
vated by the energy aggregation loss. Extensive experiments
on the DTU and Tanks and Temples datasets demonstrate that
the proposed network achieves state-of-the-art results.

Index Terms— Multi-view stereo, 3D reconstruction,
depth estimation, RGB guided depth refinement

1. INTRODUCTION

Multi-view Stereo (MVS) plays a significant role in the rep-
resentation and comprehension of 3D scenes, which is widely
applied in many areas, e.g., autonomous driving, virtual re-
ality, robotics, etc. Given a series of unstructured calibrated
images, MVS methods construct the dense 3D point clouds
by building the corresponding matches along an approximate
depth range. Current methods can be categorized into direct
point cloud-based [1], volumetric-based [2], and depth map-
based [3], where the last representation decouples the chal-
lenging problem into per-view depth estimation and multi-
view depth fusion, having been widely adopted recently.

Traditional MVS methods [4] usually follow a four-step
pipeline, including random initialization, propagation, multi-
view matching cost evaluation, and refinement. However,
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Fig. 1. Visualization of the brief multi-view stereo pipeline
and the effectiveness of proposed modules.

they often suffer from low-texture, exposure, and illumination
changes. With the rapid growth of deep learning technolo-
gies, learning-based MVS methods have shown remarkable
progress. In particular, Yao et al. [5] build the cost volume
via differentiable homography warping and using 3D CNN
[6] for robust cost matches. R-MVSNet [7] adopts GRUs
for sequential regularization to reduce memory consumption.
CasMVSNet [8], UCS-Net [9], and CVP-MVSNet [10] esti-
mate depth maps in a coarse-to-fine manner. However, these
methods use convolutions with fixed-size kernels, which lack
anisotropy in low-textured regions and produce false depth
blending at the edges of the foreground and background. AA-
RMVSNet [11] imports deformable convolution to extract
image features, and PatchmatchNet [12] augments the tradi-
tional propagation and cost evaluation steps of Patchmatch
with learnable modules. However, these methods do not fully
exploit the pixel-wise correlation between neighbors.

Our key idea is based on the observation that the depth
of a pixel is strongly related to neighbors around it. For
example, neighbors inside the edge have a positive effect
on a foreground pixel, while the background neighbors have
the opposite impact (Fig. 1(a)). Therefore, we propose the
Adaptive Non-local Neighbors Matching (ANNM) strategy,
to find a set of sampled neighbors in a relatively large region
and their spatial impact adaptively. More specifically, two
neural sub-modules are used for producing spatial similar-
ity weights and sampling offsets respectively, supplying the
non-local neighbors aware feature extraction. Furthermore,
we extend the ability of spatial perception to depth dimension
and propose the 3D ANNM. Besides, following the cascade
MVS framework, finer stages predictions cannot be corrected
when coarser stages produce severe misprediction, which can
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Fig. 2. Network structure. We adopt the coarse-to-fine scheme and two stages are presented for demonstration. Sec. 2.2
will introduce the adaptive non-local neighbors matching (ANNM) and its 3D extension, RGB guided depth refinement will be
presented in Sec. 2.3, and the energy aggregation loss is shown in Sec. 2.4.

lead to the accumulation and propagation of errors. We use a
pre-trained RGB guided depth refinement network to repol-
ish the coarsest depth estimation and highlight the contours
(Fig. 1(b)). In addition, a newly designed energy aggregation
loss is proposed for better convergence.

In summary, the primary contributions are threefold:

• We propose the Adaptive Non-local Neighbors Match-
ing (ANNM) strategy, which leverages the pixel-wise
spatial correlation of neighbors and extends it as the
voxel-wise 3D ANNM for preferable depth perception.

• We apply RGB guided depth refinement to repolish
mispredictions in coarser stages by highlighting the
contours valuable, and preventing the accumulation
and propagation of errors for finer stages.

• The proposed network is extensively evaluated on the
DTU dataset [13] and Tanks and Temples dataset [14].
The proposed method achieves state-of-the-art perfor-
mance from extensive experimental results.

2. METHODOLOGY

2.1. Overall Pipeline

Given a set of unstructured images {Ii}Ni=0, the reference im-
age is I0 and the other source images are {Ii}Ni=1. Our pro-
posed method predicts the depth map D aligned with I0. The
feature maps {Fi}Ni=0 are extracted firstly by a feature pyra-
mid network (FPN) [15] with shared weights. Afterward, a set
of feature volumes {Vi}Ni=0 is obtained via differentiable ho-
mography warping w.r.t. depth hypothesis d which uniformly
sampled from [dmin, dmax] to warp the 2D features into the
3D space in the reference camera frustum. Then, multiple
feature volumes are aggregated into a single cost volume C

to handle an arbitrary number of viewpoints. The 3D-CNN
[6] is used for cost regularization to construct the probability
volume P along the depth direction. Finally, the depth map
D is generated from P by applying the winner-takes-all [16].

We adopt the coarse-to-fine structure [8–10] where the
depths produced in coarser stages are used as the guidance
of the depth hypothesis in finer stages and the exquisite de-
tails will be gradually restored. In the following sections, we
consider the kth-level of the cascade structure for simplicity.

2.2. Adaptive Non-local Neighbors Matching

Denote one pixel p(x, y) on image I , the proposed Adaptive
Non-local Neighbors Matching (ANNM) aims to build a non-
local neighbors aware feature for p by finding a set of sampled
pixels in a relatively large region and their spatial correlation
adaptively. First, as shown in Fig. 3(a), a channel-wise unifi-
cation and a resample operation are applied to I . Inspired by
[17], the blue channel has stronger robustness, we combine
the RGB channels (IR,G,B) to a unified representation as:

Îuni = wR × IR + wG × IG + wB × IB , (1)

where wR = 0.1, wG = 0.3, and wB = 1.0. Then the Îuni
is downsampled by stride = r, repeated and stacked to get
the resampled image Î in the shape of r2 ×H/r×W/r. The
receptive field becomes more effective after resampling, and
weights are shared across different channels.

After the image transform, two sub-modules, K and G, of
ANNM are proposed for producing non-local spatial similar-
ity weights W p of k2 × 1 × 1 and sampling offsets Op of
2k2× 1× 1 for p(x, y) respectively, where k is the size of the
weighted kernel. The specific expressions are as follows:{

W p = Sigmoid(K({xr ,
y
r } ← Î))

Op = G({xr ,
y
r } ← Î)

. (2)
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Fig. 3. Illustrations of ANNM module. (a) The channel-
wise unification and resample. (b) The matching among the
center pixel and colored (represent different weights) neigh-
bors. (c) The matching among the center voxel and neighbors.

As shown in Fig. 3(b), each pixel in neighbors aware fea-
ture is obtained by calculating the weighted average from the
learned weights and offsets. Denote Fbase the feature ex-
tracted from classical FPN (local fixed-size kernel), the final
non-local neighbors aware feature F can be computed as:

F = Fbase ⊗ ps(
1

N

∑
p∈Î

W p ⊙ (Op
∆x ∪Op

∆y)), (3)

where O∆x denotes the horizontal offsets while O∆y is the
vertical one,⊙ denotes element-wise multiplication and N =
k2 is the number of sampled pixels around center pixel. We
apply pixel-shuffle (ps) [18] to transform the non-local simi-
larity from the feature domain to the spatial domain and form
the shape of the reference image.

Sec 2.1 mentioned that 2D features are encoded into the
3D camera frustum. Then, an intuitive idea is that we further
extend the 2D ANNM to 3D dimension for better exploring
explicit non-local depth aware cost matches. The 3D ANNM
is applied to the reference feature volume separately for the
simple reason that our ultimate goal is estimating the depth
map towards I0. As shown in Fig. 3(c), denote Vbase the fea-
ture volume directly warped from reference feature F0, the
two 3D sub-modules learn the non-local depth-wise similar-
ity weights W q of k3 × 1× 1 and 3D sampling offsets Oq of
3k3×1×1. The final depth aware feature volume V integrates
depth perception from voxels around, computing as:

V = Vbase ⊗
1

N ′

∑
q∈Vbase

W q ⊙ (Oq
∆x ∪Oq

∆y ∪Oq
∆d), (4)

where q is the voxel in Vbase, number of sampled voxels N
′
=

k3, and O∆d denotes depth-wise offsets. The learned depth
aware feature volume indicates more robust neighbors match-
ing, and {Vi}Ni=0 from all viewpoints are then warped into
single cost volume to regress the depth estimation.

2.3. RGB Guided Depth Refinement

Depth maps generated from coarser stages are used as guid-
ance for finer layers. However, severe incorrect prediction at
coarser stages will be accumulated in finer stages. To this end,
a recent SOTA RGB guided depth refinement network DCT-
Net [19] is applied in the coarsest layer to better highlight
the contours valuable for depth refinement. We upsample the
coarse depth to the shape of I0 which meets the high-res RGB
contour information aided. Denote ΦD and ΦI0 are the fea-
tures of D and I0 generated from the feature extraction mod-
ule, while the edge attention weights WI0 learned from I0
used to prevent texture over-transfer between the RGB/depth
image. The refined depth D̂ can be obtained as:

D̂ = DCT (ΦD,ΦI0 ,WI0). (5)

In detail, DCT (·, ·, ·) can be computed as follows:

ΦE ≜ λ̂L2
(
ΦI0

)
⊙WI0 +ΦD, (6)

D̂ = F−1
{
F
(
ΦE

)
⊘
(
I + λ̂K2

)}
, (7)

where λ̂ is set as a learnable parameter, L denotes the Lapla-
cian filter, F is the DCT operation while F−1 is the inverse
one, I is the identity matrix and ⊘ denotes element-wise divi-
sion, K is the 2D basis image of I0. The outliers predicted by
the coarser stages will be corrected through refinement.

2.4. Loss Function

We formulate the MVS problem in a classification manner
[7, 20, 21] under the supervision of the ground-truth distribu-
tion PGT among the set of valid pixels Ω. And LossCE , the
cross-entropy loss between the predicted depth representation
P and PGT , is first utilized for constraint. Moreover, we ex-
ploit the property of DCT transform with de-correlation and
energy concentration [22] to propose the innovative energy
aggregation restriction LossEA as:

LossEA = −
∑
p∈Ω

PGT (p) log
{
F−1[F(P (p))]

}
. (8)

The total loss of our l-stages model is formulated as:

Loss =

l∑
i=1

(λ1Loss
i
CE + λ2Loss

i
EA), (9)

where λ1 = λ2 = 0.5 in our experiments.

3. EXPERIMENTS

3.1. Datasets

Our experiment is conducted on DTU [13], Tanks and Tem-
ples [14] and BlendedMVS [23] datasets. DTU is an in-
door dataset consisting of 124 objects captured from 49 view-
points with 7 different lighting conditions, and it contains the
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Fig. 4. Qualitative results of scan 11 and scan 13 on DTU
evaluation set[13]. The first and the third row are generated
point clouds while the rest are the estimated depth maps.

Fig. 5. Qualitative results on Tanks and Temples dataset.

ground-truth point clouds for evaluation. Our training, valida-
tion, and evaluation split are the same as defined in [5] and [8]
for a fair comparison. Tanks and Temples dataset provides a
more challenging realistic environments with large-scale vari-
ations. BlendedMVS is a recently published large-scale syn-
thetic dataset, consisting of over 17000 rendered images.

3.2. Results on DTU Dataset

Following the common practice, the number of views is set
to 5 with a resolution of 640 × 512, the initial depth planes
hypothesis is set to 48, and sampling interval is from 425mm
to 935mm. Our model is implemented using PyTorch, trained
for 16 epochs on NVIDIA Tesla V100 GPU with a starting
learning rate of 0.001. For evaluation, we input 7 images
with original resolution, and follow previous methods [5] for
depth fusion to reconstruct point clouds. Qualitative results
are shown in Fig. 4 and Tab. 1 shows quantitative results. We
report accuracy (Acc.) and completeness (Comp.) statistics
by the official MATLAB evaluation protocol, and our method
achieves the best performance compared to other methods.

3.3. Results on Tanks and Temples Dataset

To further demonstrate the generalization ability of our
method, the network is further trained on BlendedMVS
dataset with 7 input images of 786 × 576 resolution, and
evaluated on the Tanks and Temples benchmark. The F-score

Table 1. Quantitative results on the DTU[13] and Tanks
and Temples[14] datasets. Bold numbers represent the best
and underlined numbers represent the second-best.

Method DTU Tanks and Temples
Acc. Comp. Overall.↓ Family Francis Horse LH M60 Panther PG Train Mean↑

COLMAP[24] 0.400 0.664 0.532 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 42.14
MVSNet[5] 0.396 0.527 0.462 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 43.48

R-MVSNet[7] 0.383 0.452 0.417 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38 48.40
CasMVSNet[8] 0.325 0.385 0.355 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56 56.42

UCS-Net[9] 0.338 0.349 0.344 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 54.83
Vis-MVSNet[25] 0.369 0.361 0.365 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 60.03

CVP-MVSNet[10] 0.296 0.406 0.351 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 54.03
PatchmatchNet[12] 0.427 0.277 0.352 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 53.15
AA-RMVSNet[11] 0.376 0.339 0.357 77.77 59.53 51.53 64.02 64.05 59.47 60.85 55.50 61.51
EPP-MVSNet[26] 0.413 0.296 0.355 77.86 60.54 52.96 62.33 61.69 60.34 62.34 55.30 61.68

Ours 0.336 0.295 0.316 80.39 65.64 51.08 62.33 62.30 61.89 59.02 54.47 62.14

Table 2. Ablation results on the proposed model.
Method 2D ANNM 3D ANNM R/D Refine EA Loss Acc. Comp. Overall.↓
Baseline (CasMVSNet [8]) 0.325 0.385 0.355
+2D ANNM ✓ 0.339 0.320 0.330
+2D&3D ANNM ✓ ✓ 0.343 0.306 0.325
+2D&3D ANNM+R/D Refine ✓ ✓ ✓ 0.347 0.290 0.319
Proposed Method ✓ ✓ ✓ ✓ 0.336 0.295 0.316

that calculates the mean of precision and recall is reported.
Tab. 1 shows the results of each method, where our model
achieves the best or second-best in most scenes. The corre-
sponding point cloud reconstructions are shown in Fig. 5.

3.4. Ablation Study

Tab. 2 shows the ablation experiments of our methods. The
baseline model [8] uses fixed-size convolution for feature ex-
traction, and incorrect cost matches are propagated through
the coarse-to-fine flow. With the introduction of 2D ANNM,
the non-local neighbors aware feature adaptively learns the
spatial similarity matches and their correlations (Fig. 1(a)),
resulting in a remarkable improvement in completeness. And
the extended 3D ANNM further enhances the depth-wise per-
ception ability. The use of pre-trained RGB guided depth re-
finement modules effectively corrects errors in coarser stages
and prevents the accumulation of errors by introducing high-
res RGB contour information (Fig. 1(b)). With the effect of
a collaboration of all introduced modules, our proposed net-
work obtains a 23.4% improvement in completeness while
ensuring accuracy, achieving state-of-the-art results.

4. CONCLUSION

In this paper, we present the N2MVSNet which introduces the
adaptive non-local neighbors matching strategy pixel-wise in
the spatial domain and voxel-wise in the depth dimension.
The proposed ANNM aggregates neighbors aware correla-
tion by constructing non-local neighbors and corresponding
weights, while the 3D ANNM further explores the depth per-
ception among cost matches. And we adopt the pre-trained
RGB guided depth refinement for depth hypothesis repolish
in the coarsest stage, which prevents the accumulation and
propagation of errors in the coarse-to-fine scheme. Finally,
the energy aggregation loss is utilized for supervised training.
Extensive results on the DTU and Tanks and Temples datasets
demonstrate our state-of-the-art performance.
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