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A Detailed Architecture of Triplane Generator

As we mentioned in the previous chapter, the shape of triplane noise tokens is set
to (3× 8× 20× 20), where 3 represents the number of feature planes, 8 represents
the hidden dimension and 20× 20 is the spatial shape. The triplane tokens are
reshaped to (3× 400× 8), and each plane (1× 400× 8) is applied as the query
to do cross-attention with the extracted DINO feature tokens (1× 3889× 384)
separately. The attended tokens are then reshaped back to (3× 8× 20× 20) for
the input of the triplane generator. The generator for each plane is composed
of one mid-block and L up-sample-blocks (L = 5). The mid-block comprises
two 2D convolution layers with residual connections (res-conv-layers) and one
attention layer. A group normalization and a SiLU activation follow each res-
conv layer. For the up-sample-blocks, we similarly adopt two res-conv-layers
followed by group normalization and SiLU activation. Then, a bilinear upsampler
is appended in each block, except for the last one. The upsample layers expand
the spatial size of noised tokens (3× 8× 20× 20) to the shape of final triplane
grids (3× 64× 320× 320). Taking one feature plane PXY for instance, the noise
tokens tXY with size of (dt × rX × rY ) are lifted from dt to DP in channels
and upscaled (L− 1) times in the spatial dimensions to the final plane’s shape
(DP × RX × RY ), where rX = 20, rY = 20, dt = 8, DP = 64, RX = 2L−1 × rX
and RY = 2L−1 × rY .

B Detailed Derivation Formulation in DPA

Commonly used aggregations introduced entanglement to pose with triplane
features. One operation is Hadamard product used in [4]. On account of the
multiplicative nature, when gradient update is unstable in the early steps, product
among planes causes violent vibration on pose optimization and may bring
interference into gradients back propagated from triplane feature, further resulting
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in updating collision on pose. However, in forward-facing scenes, angles of images
or videos are generally consistent, with all objects primarily facing towards
cameras. Since scenes emphasize the front view of objects, the frontal features
gain prime focus and accordingly only one or two planes may receive a good
optimization signal. Meanwhile, unlike the relatively independent update of
planes, the parameters of each pose receive optimization signals from all different
planes, as the 3D points for feature query are obtained by sampling rays from
the corresponding camera.

To disentangle pose with planes, we design our DPA, which is formulated as:
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where D(x) is the gradient-detached copy of x and ∂D(x)
∂x is zero. Thus, denote

that the feature obtained from the proposed aggregation F̂ = DPA(P,x), the
core part ∂F̂
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Since ∂D(x)
∂x is zero and ∂ψ(P,D(x))

∂x is zero, we get the final expanded expression
of ∂F̂

∂x as:
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, (3)

where the gradients back propagated to pose from different planes are combined
with sum, which is beneficial to pose optimization. Meanwhile, with the gradients
for plane XY as:

∂F̂
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=
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k ψ (Pk,D(πk(x)))

∂PXY
, (4)

and so as the other two planes Y Z,XZ, our triplane features preserve the
expressive ability for scene representation.
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C More Experimental Details

Proposal Sampling and Density Field. We use a proposal sampling strategy
for 3D point sampling and implement it similarly to the one in K-Planes [4], which
is a more compact variant from the proposal sampling strategy in Mip-NeRF
360 [1]. K-Planes designed a density model with a triplane structure similar to
its feature model, and trained it with histogram loss. We borrow the two-stage
proposal sampling and basic density models from K-Planes and histogram loss
from Mip-NeRF 360 but bond them with the pose-scene joint optimization.
Therefore, our density field are forged and updated by another triplane generator.

Datasets. We conduct experiments on two datasets: LLFF [8] and NeRF-
synthetic dataset [9]. The LLFF [8] is a real-world dataset consisting of eight
forward-facing scenes captured by mobile phones. The NeRF-Synthetic dataset [9]
contains pathtraced images of eight objects that exhibit complex geometry and
non-Lambertian material.

Implementation Details. To achieve the joint optimization of camera poses
and triplane, we follow the architecture of K-Planes [4] with some modifications
for pose refinement and thus make the joint pose-triplane optimization baseline.
Assuming known camera intrinsics, we follow [7, 11] to parameterize camera
extrinsics as learnable variables T ∈ SE(3), where the rotations are optimized in
axis-angle ϕi ∈ so(3).

In the first stage, we utilize two separate Adam optimizers to independently
optimize the triplane generator and camera poses. Specifically, the learning rate
for the generator linearly increases from 0 to 0.002 in the first 128 steps of training
and decreases with cosine-annealing until the second stage. The learning rate for
the camera pose is set to 0.001. We switch to the second stage of learning after
4000 steps with our proposed warm-start strategy.

In the second stage, we discard the triplane generator and set the generated
triplane as learnable variables, utilizing a new Adam optimizer for optimization.
The learning rates for triplane and camera parameters linearly increase from 0
to 0.03 and 0.001 respectively within the first 128 steps from the second stage,
ensuring a smooth transition to the second-stage direct optimization approach.
Similar to the first stage, these learning rates decrease exponentially to 1× 10−5

in the remaining steps.
In both stages, we randomly sample 4096-pixel rays at each optimization step.

Following [4], we employ proposal sampling to sample 48 points along each ray
for subsequent volume rendering. For forward-facing LLFF, we utilize normalized
device coordinates (NDC) to better allocate our resolution and enable unbounded
depth. During the evaluation, we follow [7] to run additional steps of test-time
learning on the frozen trained models and only optimize poses for testing during
this procedure. Our model is implemented with PyTorch and trained 60k (for
NeRF-synthetic [9] and 70k for LLFF [8]) epochs per scene on an NVIDIA Tesla
V100 GPU.
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Evaluation Criteria. For novel view synthesis evaluation, we first conduct
test-time optimization on each testing pose as proposed in [7] to eliminate minor
errors caused by the misalignment of the test phase and training phase camera
poses. We report PSNR, SSIM [10] for novel view synthesis evaluation. For camera
pose evaluation, we follow previous works [2,7] to perform Procrustes analysis
for aligning the training poses and the GT poses before calculating the rotation
error (in degree) and translation error (scaled by 100).

D More Experimental Results

Additional Qualitative Results of Novel View Synthesis. We provide
additional novel view synthesis comparisons as shown in Fig. 1. Since the imple-
mentation of GARF [3] and HASH [5] are unavailable, we directly use the results
reported in their paper for comparison.
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Fig. 1: Additional qualitative results of novel view synthesis.

Ablation on Scene Texture Embedding. As shown in Sec. D, we additionally
perform an ablation of the scene texture embedding module in the triplane
generator. The results show a degradation in the quality of the novel view



Disentangled Generation and Aggregation for Robust Radiance Fields 5

rendering after removing this module from our model. This demonstrates that
our Scene Texture Embedding module introduces more scene texture prior for
triplane generation, thus enhancing the triplane representation.

Table 1: Ablations on applying the Scene Texture Embedding in the triplane generator
in real-world LLFF dataset [8].

Settings PSNR↑ SSIM↑
Ours with Scene Texture Embedding 25.90 0.828

Ours without Scene Texture Embedding 25.35 0.813

Besides, we further provide results across varied scenes in Table below, the
proposed STE improves a minimum of 0.18 db on Lego and a maximum of 1.23
db on Fortress, indicating consistent improvements.

Table 2: More detailed ablations on the Scene Texture Embedding module.

Fern Fortress Room Flower Lego Drums
Ours without STE 24.68 29.56 32.84 26.67 32.01 25.73
Ours 25.70 (+1.02) 30.79 (+1.23) 33.95 (+1.11) 27.06 (+0.39) 32.19 (+0.18) 26.10 (+0.37)

More Empirical Experiments on Inappropriate Learning Signals from
Different Feature Grids. We further provide empirical experiments from
Lego as shown in Fig. 2. The ‘forward-facing-like’ cameras are gathered within a
limited view angle towards PlaneXZ and the ‘surrounded-like’ set almost covers
the whole scene. Triplane receives less supervision (PlaneXY and PlaneYZ) in
‘forward-facing-like’ scenes with more noisy and incomplete feature textures.
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Fig. 2: Visualization of camera distribution and plane features.

Additional Ablations on Two-Stage Warm-Start Training. We perform
a two-stage system ablation experiment on the challenging scene orchids by
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switching from the first stage to the second stage at different training steps as
shown in Fig. 3. We can see our two-stage strategy (orange) stably improves the
performance regardless of the quality of the first stage (blue).

Fig. 3: Comparisons of different steps of switching to second stage.

Comparison of Utilizing Noise Tokens and Image Tokens as Input. We
initialize fixed triplane noise tokens to introduce spatial priors. We provide more
comparison as shown in Tab. 3 and Fig. 4.

Table 3: Qualitative comparison between using image tokens and noise tokens as input.

Scenes Room Fern Lego Chair
Image Tokens Only 31.90 24.48 30.07 34.27
Ours 33.95 25.70 32.19 37.78

Image Tokens Only Ours
Lego Chair

Image Tokens Only Ours

Fig. 4: Visual comparisons of feature plane between only image feature tokens inputs
and our full inputs with noise tokens at 1000 training steps.
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Visual Comparisons with Baseline Joint Estimation. We provide addi-
tional visualization comparisons as shown in Fig. 5 to illustrate the effectiveness
of our approach. Compared to the baseline simple combination of pose estimation
and triplane-NeRF optimization, our approach achieves higher-quality visual
effects, which demonstrates that our proposed method mitigates the errors caused
by local updating and entanglement, leading to better pose estimation and novel
view rendering results.

Limitations and Future Works. Although our method can recover the camera
pose and triplane radiance fields effectively, there is still room for improvement.
In the future, we will explore introducing more powerful 3D representations
such as 3D Gaussian Splatting [6] into the joint optimization pipeline and try to
further reduce the dependence on camera pose initialization.
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Fig. 5: Visual comparisons between our full model and the baseline direct
joint pose-triplane optimization.
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